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J. Phys. A: Math. Gen. 17 (1984) 1163-1171. Printed in Great Britain 

Symmetry breaking patterns and extended Morse theory 

P J Houston? and Siddhartha Sen 
School of Mathematics, 39 Trinity College, Dublin 2, Republic of Ireland 

Received 14 October 1983 

AbsbPTr An indirect topological method is considered which constrains the possible 
breaking patterns of a Lie group symmetry for Higgs-Landau systems. The application of 
the method and its efficiency are discussed. 

1. Introduction 

The phenomenon of spontaneous symmetry breaking arises in many physical situations. 
That is where the symmetry of a system changes discontinuously with a continuous 
change of an external parameter of the system. A description of these symmetry 
changes is given, in Landau theory of phase transitions, by some polynomial P ( 4 )  
usually of degree four or less in the order parameter or Higgs field, 4, which is valued 
in some vector space V. The Higgs-Landau polynomial of the system, P( +), is invariant 
under the linear action of a group G on V, is bounded below and has a local maximum 
at 4 = 0. The actual symmetry of the system is given by the stability subgroup H < G 
of the absolute minimum of P ( 4 ) .  The symmetry is said to be spontaneously broken 
from G to H and H may change in a discontinuous way with a continuous change of 
the coefficients of P ( 4 ) .  

The group G may be a discrete group, as in Michel and Mozrzymas (1978), or it 
may be a Lie group, as for the grand unified theories (GUT) of particle physics (George 
and Glashow 1974). (For reviews see O’Raifeartaigh (1979), Frampton et ai (1980), 
Zee (1982).) In either case the problems encountered in minimising the Higgs-Landau 
polynomial may be formidable and it is of interest to develop methods to obtain the 
broken symmetry group H with less effort. For problems of symmetry breaking in 
crystallography, in which case G is discrete, Michel and Mozryzymas (1978) give a 
procedure for finding the broken symmetry without explicitly minimising P( 4). Their 
method is topological in nature and involves the use of the Morse inequalities as, in 
their case, P ( 4 )  is a Morse function (i.e. the critical points of P ( 4 )  are non-degenerate) 
(Bott 1 982). 

For models of GUT, such as the SU(5) model of Georgi and Glashow (1974), the 
group ( G  = SU(5)) is a Lie group and, the stabiliser of the minimum of the Higgs 
potential P ( + ) ,  at least at the tree level, defines the broken symmetry to be e.g. 
SU(3) XSU(2) X U(1). Using the Higgs mechanism, then, the masses for the vector 
gauge Bosons, the Fermions and the Higgs fields 4 are obtained. When G is a Lie 
group, as for GUT, in order that the broken symmetry group H also be a Lie group 
the critical points of P ( 4 )  must have some degeneracy. Thus P ( 4 )  is not a Morse 
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function and the method of Michel and Mozrzymas (1978) cannot now be applied 
directly. Our purpose in this paper is to suitably adapt the Michel-Mozrzymas strategy 
so as to be applicable to the case in which G is a Lie group and P ( 4 )  is not a Morse 
function. As we shall see the appropriate generalisation involves the concept of an 
extended Morse function (Bott 1982). 

A summary of the strategy for determining the possible candidate stabilisers of the 
minimum of P( #) (without explicitly minimising P( 4)) is as follows. First, write down 
all non-trivial stabilisers of the action of G on V and the corresponding G-orbits (for 
a review of the group theory involved see Michel (1980)); second, regarding P ( # )  as 
an extended Morse function defined on the sphere SD, D =dim V, write down the 
extended Morse inequalities where the only critical manifolds allowed are G-orbits; 
third, write down any additional inequalities e.g. an upper bound on the number of 
critical manifolds which can occur, etc; finally, from these inequalities see what 
stabilisers are allowed for the minimum of P ( 4 ) .  As is evident, the nature of the 
approach is topological and algebraic and we will only obtain information on local 
minima of P( 4). We will not be able to distinguish the absolute minimum from among 
these. 

The remainder of the paper has been arranged as follows. In § 2 we give a precise 
formulation of the background to the problem of symmetry breaking being considered. 
In § 3 we review relevant points from extended Morse theory and apply it to the 
problem in hand. In B 4 we collect some results on roots of polynomial equations 
which will give additional inequalities to those of § 3. Section 5 contains a worked 
example illustrating the usefulness of the method and our conclusions. An appendix 
on the cohomology of homogeneous spaces is included. 

2. On G-invariant polynomials 

In the case of spontaneous symmetry breaking phenomena encountered in e.g. GUT 

we are presented with the following general mathematical structure. A compact, 
connected Lie group, G, acts on a real vector space V in a linear way with no non-zero 
fixed points. Under g E G the Higgs field # E V transforms to A(g)4 E V ( A  defines 
a real representation of G on V). For any point # in V the set of all elements in G 
which leave # fixed is called the stabiliser of 4 and denoted G6 and is a subgroup of 
G. Letting G act on a point 4 generates a subset of V, G 9 4, called the orbit of 4. All 
points in the same orbit have stabilisers in the same conjugacy class and, in fact, we 
can partition V into strata by use of the conjugacy classes of the stabilisers of its 
points. We let ( .  , - ) be an inner product on V which is G-invariant (i.e. 
(A(g)41, A ( g ) h )  = (41,421, for all g E G, # I , & €  V) and we let l l # I l  = (4, #)"'denote 
the norm of 4. 

The group G corresponds to the symmetry group of the system being considered. 
To obtain the true symmetry we must be given a Higgs-Landau polynomial P ( 4 )  on 
V which we take to have the following properties: 

(i) P( 4) is invariant under the action of G i.e. P(A(g)4) = P ( 4 )  for all g E G, # E V, 
(ii) P ( 4 )  has a local maximum at q5 = 0, 
(iii) P( 4 )  is bounded below and P( 4)  --* 00, as 11411 +CO. 

(iv) P ( 4 )  is of maximum degree 4, 
(Additional assumptions we can require on physical grounds are 

(VI P(4)  = P(-4).) 
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The true symmetry group of the system has the same conjugacy class as that of 
the stabiliser of a point on the minimum orbit of P( 4 )  (note that if C$ is a critical point 
of P ( 4 )  then so is A(g)+  for any g E G).  

( #J), . , . , I::’ (4 )  (not all values from 2 to k may occur 
in the superscript) be independent polynomial G-invariants, in terms of which any 
G-invariant function may be expressed (Michel 1980). Here the superscript denotes 
the degree of the invariant, i.e. Zy’ (Ad) = A “ Z Y ’  (4).  Then P ( 4 )  can be written as 
an algebraic function of Z!2), . . , , Zif ’  (not necessarily as a polynomial function) 

Let Z Y )  ( 4 ) ,  Z;’) ($I), . . . , 

( l a )  P( 4) = 5(Zi2), . . . , I,, ( k )  ). 

A typical form for P(d),  satisfying the assumptions (i)-(v), is 

where the coefficients a ! ’ )  are constants and are the physical input parameters of the 
system. Thus a full solution to the symmetry breaking problem would be given by 
finding the conjugacy class of the stabiliser of a point on the minimum orbit of P ( 4 )  
and its dependence on { a ! ’ ) } ,  This is an extremely difficult task, in general, and has 
been carried out for only special representations A (Frampton et a1 1980, Kim 1983a) 
(for a recent status report see Kim (1983b)). The problem we will address here, as 
in Michel and Mozrzymas (1978), is a somewhat less difficult one. It consists in 
determining the allowed conjugacy classes of stabilisers for minima of P ( 4 )  which can 
occur for some values of { a ! ’ ) } .  

Before ending this section, let us note some properties of the invariants. First 
(Z\2), . . . , Z::)) may vary independently in a region S of R”, n = Xs r, ( n  S dim V ) ,  
defined by n inequalities 

(,(z\” , . . . ,  I ; ~ ’ ) Z O , ~ = I  , . . .  , n .  (2) 

The region of V where equation (2) holds as a strict inequality is the generic stratum 
and is open and dense in V (Michel 1980). The lower-dimensional strata are given 
by equation (2) with various combinations of the equality holding. Since knowing the 
stratum in which a point of V lies is the same as knowing the conjugacy class of its 
stability subgroup we may repose the spontaneous symmetry problem as a nonlinear 

subject to equation (2). One consequence of this formulation of the problem in the 
case of equation (1 b )  is that since there I (  4) is linear in Zp), . . . , Z::) the minimum 
must have (Zi2) ,  . . . , Z::’) on the boundary of S and outside the generic stratum. 

programming problem, namely: minimise equation ( l a )  (or (1 b ) )  with (Z!’), . . . , I,, ( k )  ) 

3. Extended Morse inequalities 

By virtue of assumption (iii) in 4 2 we may regard P ( 4 )  topologically as a C“ function 
from the sphere S D  ( D  =dim V) to R (i.e. we regard V union 00 as S’). Moreover, 
P( 4) has a local maximum at 4 = 00 (as well as 4 = 0). The set of local minima of 
P( 4) on V is contained in the set of critical points of P( 4 )  

VP( 4 )  = 0. (3) 

Since P ( 4 )  is G-invariant and since 4 = 0 and 4 =CO are the only fixed points of G 
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it follows that the Hessian of a critical point of P ( 4 )  is degenerate i.e. P ( 4 )  is not a 
Morse function. However, P ( + )  may be taken to be an extended Morse function. 

Let M be a compact c ~ ~ e c t e d  manifold of dimension m and let f be a C“ real 
valued function on M. Then a connected submanifold N of M is said to be a 
non-degenerate critical manifold of M with respect to f if (Bott 1982): 

(i) each point of N is a critical point off, 
(ii) the Hessian of f is non-degenerate in the normal direction to N. 
This second condition means that in a neighbourhood of a point of N we can choose 

coordinates (x’, . . . , XI, XI+’, . . . , x ” )  on M ( I  = dim N) so that locally N is given by 
x’ = 0, i = 1 + 1 ,  , . . , m and then we require 

det(a2f/8xi ax’)(,l+l m=O # 0,  i , j = l + l ,  ..., m. (4) 

We say that f is a non-degenerate Morse function in the extended sense if all its 
connected critical sets are non-degenerate critical manifolds. 

We denote the Poincar6 polynomial of M with real coefficients by B,(M) i.e. 
m 

B,(M)= t’bi(M), ( 5 )  
i = O  

where b i ( M )  is the ith Betti number i.e. b i (M)  =dim H i ( M ,  R), H i ( M ,  R) being the 
ith cohomology group of M with real coefficients. We denote Br(N), . . . similarly. 
Let f be a non-degenerate Morse function in the extended sense. For any element N 
of C(f), the set of connected critical manifolds off on M, we let AN, called the index 
of N relative to f, denote the number of negative eigenvalues of the matrix in equation 
(4). Defining the Morse series of f over the real field of coefficients by 

we have the extended Morse inequalities: 

Theorem. 

~ , ( f ) -Br(M)=  ( l + t ) Q , ( f )  (7) 
where Q , ( f )  is a polynomial in t of degree m - 1 with non-negative coefficients. 

When N is a minimum AN = 0, when N is a maximum AN =dim M-dim N and 
otherwise N is a saddle. 

For application purposes a more suitable form of equation (7) is desirable. We 
partition the set of critical manifolds C(f) into classes with the same Betti numbers. 
We denote a typical element of each class by N‘”) and let dN(F),j be the number of 
critical manifolds in the same class as N(”) with index j ,  j =  0,. . . , m. The Morse 
function M , ( f )  can now be written as M , ( f )  = XEo c i ( f ) t i  where 

The number of minimal (maximal) critical manifolds in the same class as N(”) is given 
by dN(*),O (dN(’).dimM-dimN(*)). The Morse inequalities of equation (7) take the form 

I I 

i =O i=O 
c ( -1)Ipici(f)  3 1 ( - l ) ’ - ib i (M) ,  O s  1s m -  1, 

m 

f ( - l ) m - i c i ( f )  = ( - l ) m - i b i ( M ) .  ( 9) 
i =O i = O  
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We now return to the Higgs-Landau polynomial P ( 4 ) .  We regard P ( 4 )  as an 
extended Morse function on SD,  D = dim V which has a local maximum at 4 = 0 and 
4 =a. The only critical manifolds that we allow P( 4) to have are G-orbits. Thus to 
apply the Morse inequalities of equation (9) we need only know the cohomology 
groups H*( S D ,  R) and H*( G 4, R). The former cohomology is well known ( Pt( S D )  = 
1 + t D )  and the latter may be computed in a straightforward way?. We give the details 
in the appendix. 

4. Number of roots of a system of equations 

The inequalities of § 3, on their own, are not very restrictive. They can become 
restrictive when combined with additional information. In Michel and Mozrzymas 
(1978) this additional information took the form of an upper bound on the total 
number of critical points. Thus we now try to get some bounds as the number of 
critical manifolds of P (  4). 

We can express equations (3) for the critical points of P( 4) in terms of the invariants 
as follows. Write 

(VI!"' (41, vP(4)) = 0, i = 1, . . . , r,, (10) 

with P(4) given by equation (1) and express equation (10) in terms of the invariants 
using 

( v p )  (4), v y  (4)) = K y ; Y I . . . Y " ) p Y '  . . . I ( k ) ' n  rk ' (11) 
Y I  ... Y" 

L y = a + P - 2  

where the coefficients K!. )  are numerical constants which can be determined directly. 
The resulting form for the equations for a critical point may be written 

e j , /  = 0,  j = 1 , .  . . , n, 
SES, 

where Sj is contained in N", 6 = (6 , ,  . . . , a n ) ,  z 6  = z f l  . . . .z:n and z = ( I ! ' ) ,  . . . , I,, ( k )  ). 

In order to avoid the pseudo-Goldstone Boson problemf we will assume that only 
isolated roots exist to the critical point equations when written in the form (12) for 
the invariants. 

Regarding z as a multi-component complex variable and equations (12) as complex 
equations we quote two theorems governing the number of roots to the system: 

Theorem. (BCzout) (Semple and Roth 1949). If the degree of ej,&z 8 '  is e,, 

e,e2.  . . en. 
j =  1 , .  . . , n then the number of roots of the system (12) including multiplicities is 

A more elaborate result given in Bernshtein (1975) is: 

Theorem. If no component of z is zero, the number of roots of equations (12) is given 
by the mixed Minkowski volume V,(S,, . . . , S,,). 

t It is possible to restate this section with the cohomology having coefficients in an arbitrary field. Thus the 
restriction to real coefficients can mean a loss in information but we make it on practical grounds as the 
cohomology of homogeneous spaces (i.e. of G-orbits) is difficult to  obtain for coefficients other than for R.  
$ That is, P(+) should not be invariant under a symmetry group larger than G. 
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The value of V,( SI ,  . . . , S,) is defined by 

Vh.I(S,, . . . , S ” )  = c V,(S,) 
I 

+(-1)”-2 1 V,(S,+S,)+ . . . + V,(S,+ * .  . +S,), 
1‘1 

where V , ( S )  denotes the Euclidean volume in R” of the convex hull of the set S (the 
volume of the unit n-cube being 1) and where SI + S2 = ( 4 ,  +q21ql E S,}. In the latter 
theorem if one of the roots has a zero component, 2, say, we choose a different variable 
z ;  = z1 + a  say, where z ;  does not have the value zero. 

When z is real valued the numbers in the above two theorems give upper bounds 
to the number of possible roots of equation (12). 

5. Application 

We will now give, in detail, the strategy applying the material in §§ 3 and 4 for finding 
all allowed spontaneous symmetry breaking patterns. We will then consider the 
prototype example of G = SU(4), with the representation A being the adjoint rep- 
resentation of G, in order to test the method and discuss its efficiency. 

As we have already seen, the conjugacy class of the stabiliser of a point 4 of V is 
obtained from the stratum in which the orbit G . 4 lies (i.e. by knowing the orbit type). 
Thus we seek to find, within topological constraints, what are the allowed orbit types 
and their number for the critical manifolds of P ( 4 ) .  In particular we are interested 
in the number allowed to be minimal orbits. We proceed as follows. 

(a) We list all the possible G-orbit types (i.e. a typical orbit from each stratum), 
their PoincarC polynomials and the conjugacy classes of their stabilisers. The critical 
manifolds of P ( 4 )  are all G-orbits by the assumption that equations (10) and (11) 
have only isolated roots. Thus the various types of critical manifolds are also G-orbit 
types. Let us, as in § 3, further partition the set of orbits (critical manifolds) into 
classes with the same Betti numbers and denote a typical element of each class by 
N(@) ( F  labelling the class). The number of critical orbits in the same class as N ( p ’ )  
and with index j is again denoted by d,+I,,. This number is unknown except for a 
maximum at 4 = 0 and 4 = cc i.e. d{o),D = d{,i,D = 1 ( D  = dim V). In particular we 
look for the number of local minima of P ( 4 ) ,  d + ~ , ~ ,  allowed. 

(b) We compute {dN(*l,,} which satisfy the Morse inequalities 

D D 

(-l)-C](P) = ( - l y - j b , ( P ) ,  
J=o  J = O  

where b , (SD)  = a0,, + aD., and 

(c) Let Tp denote an upper bound on the number of critical manifolds, i.e. isolated 
roots of the critical equations (10) and ( l l ) ,  as given using § 4. (It is easy to compute 
a general estimate for T, in terms of the degrees of P ( 4 )  and 1;” (d), . . . , 1 : : ) (4 ) .  
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However we d o  not give one  as it can usually be improved upon for any particular 
P ( d ) . )  We can now compute the subset of {dN(+i , , }  remaining from (b) allowed by 
the upper bound 

(the extra 1 coming from the maximum at 4 = C O ) .  Further restrictions on {cl,++),,}, 
such as not allowing generic critical orbits, may also be used if e.g. P ( 4 )  is of the 
form ( l b ) .  

By way of illustration we now consider the example: G = SU(4) with A being the 
adjoint representation (dim G =d im V = 15). There a re  three independent invariants 
I ' " ( d ) ,  s = 2,3 ,4 ,  and any non-trivial stabiliser is conjugate to one of the following 
groups: S(U( 1) X U(3)),  S(U(2)2), S(U( 1)2 X U(2)), S(U( 1)'). Typical orbits from each 
stratum are  then, respectively, N'" = SU(4)/S(U( 1) X U(3)), N'" = SU(4)/S(U(2)*), 
N'3' = SU(4)/S(U(l)* X U(2)), N'4i = SU(4)/S(U(1)4) (NI4' being in the generic 
stratum) (Michel 1980). The PoincarC polynomials of N ( p i ,  /L = 1,2 ,  3 ,4 ,  are obtained 
from the formula ( k ,  > 0, Z k ,  = 1 s h )  (Greub et a1 1976) 

We  have computed { d p w ) , , }  satisfying (a),  (b),  (c) above. (The numerical work involved 
has been carried out using a Fortran program.) In the table we give the allowed 
minima, dNi+' ,o and the number, # , of configurations of critical manifolds with those 
minima (the number in parentheses denotes the value, if different, obtained assuming 
n o  generic critical manifolds). We  have allowed the upper bound Tp to have values 
Tp s 5 (there are no  possibilities for Tp s 3). 

From the table it is clear that the number of critical manifolds which can arise is 
highly sensitive to the value of the bound Tp. The most optimistic situation occurs 
when Tp = 4 as there is only one  possible breaking pattern of SU(4) allowed, namely 
SU(4) breaks to S(U(1) X U(3)). Even in the case Tp = 5 the information contained 
in the table is useful as it tells us, for instance, that there is only one possibility, (*), 
of having one minimal orbit of type N"' and another of type N"', together. Thus we 

Table 1. We give the local minima numbers, d,V(*I ,O and the number, # , of configurations 
of critical manifolds allowed by (a) ,  (b) ,  (c) with these minima, for a bound T, where 
G = SU(4) and A =adjoint representation. The value in parentheses denotes the number 
of non-generic critical orbits ( i f  different). We have not displayed the non-minimal critical 
orbit number, d N 1 P ' , , ,  j Z 0 ,  for the sake of convenience. (E.g. for ( * )  we have dNc31,, = 
d.Vt:l,8= 1, dNi*i., = O  otherwise.) 

Tp d , l O  d \ > o  d c 3 o  d \ a n  * 
4 1  0 0 0 1 

5 1  0 0 0 10 
2 0 0 0 1 
0 1 0 0 22 (18) 
1 1 0 0 
0 0 1 0 5 
0 0 0 1 4 ( 0 )  
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could have a first-order phase transition with the symmetry pattern changing from 

We have mentioned previously that the use of real cohomology, alone, may result 
in a loss of information. By this we mean that some types of orbits may be identified. 
Hence, the corresponding stability subgroups may be identified. (Two types of orbits 
will be identified if their integer-cohomologies differ only by torsion.) Further work 
can be done to resolve this identification e.g. by making use of integer-mod 2- 
cohomology. However, as regards examples from physics, we can expect that the 
information obtained using real-cohomology alone is substantial and, in particular, for 
the SU(4) example above the integer-cohomology of each N ( @ ' )  is torsion free (i.e. 
there is no information loss). 

S(U( 1) x U(2)) to s (u(2)2) .  

Appendix. The cohomology of homogeneous spaces 

We need to know the PoincarC polynomials, i.e. the cohomology, of the orbits of the 
action of G on V. For cohomology with real coefficients this is a straightforward task. 
We shall now give a theorem which enables the computation of this cohomology. 
Tables of the PoincarC polynomials of standard cases may be found in Greub er a1 

First we note that we may identify an orbit G 4 with the coset space or homogeneous 
space G/ G,. Thus our task is to consider the cohomology of the homogeneous spaces 
G/ H where H is a subgroup of G. Letting G be a compact connected Lie group and 
H a closed subgroup of G, then G / H  is a topological manifold. Let 59 denote the 
Lie algebra of G and X the subalgebra of 9 corresponding to H. Let Ad denote the 
adjoint action of G on 9 and let ( , ) denote the Ad-invariant inner product on 9 (the 
Cartan-Killing form). Then by 2' we mean the orthogonal complement to X in 9 
with respect to (,) .  We denote by a'( W )  the vector space of l-multi-linear skew 
symmetric real-valued maps on W (  = 59, 2, XL) and let Ad* be the action on a'(%) 
induced by Ad. We let fl'(XL)H be the vector space of all w in f l r ( X ' )  such that 
Ad(h)*w = w, for all h in H and we define d by 

(1976 pp 492-7). 

dw(Xi , .  . . , Xr+i) 
= ( - - I ) ~ + J W ( W  component of [x,, x,], x ] , .  . . , ii,. . . , ij, . . . , x,+,), 

l < J  

(-41) 

where X I , .  . . , Xf+l are in 2l, w is in fl'( X') and [ , 3 denotes the Lie product on 
9 ( means that the entry is omitted). We can compute the cohomology of G / H  in 
terms of elementary algebraic properties of G, H and the imbedding of H in G with 
the following isomorphism (Spivac 1975). 

Theorem. 

Ker d :  flf(XL)H +fl"'(2')" 
d(Q'- '(  X ' ) H )  H ' (  G I H )  = 
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